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Abstract. Using the hydrodynamical model and following the coupled mode approach, detailed analytical
investigation of stimulated Brillouin scattering is performed in an electrostrictive semiconductor. The total
induced current density including diffusion current density and the effective Brillouin susceptibility are
obtained under off-resonant laser irradiation. The analysis deals with the qualitative behaviour of the
Brillouin gain and transmitted intensity with respect to excess doping concentration and magnetic field.
Efforts are directed towards optimizing the doping level and magnetic field to achieve maximum Brillouin
gain at pump intensities far below the optical damage threshold level. It is found that by immersing
a moderately doped semiconductor in a sufficiently strong magnetic field in transverse direction, one
can achieve resonant enhancement of Brillouin gain provided the generated acoustic mode lies in the
dispersionless regime.

PACS. 72.30.+q High-frequency effects; plasma effects – 77.65.Bn Piezoelectric and electrostrictive con-
stants – 42.65.An Optical susceptibility, hyperpolarizability – 42.65.Es Stimulated Brillouin and Rayleigh
scattering

1 Introduction

Stimulated scattering processes are nonlinear (NL) inter-
actions in which an incident wave is converted to a fre-
quency up or down shifted scattered wave. The difference
in the photon energy between the incident and scattered
wave is supplied by or taken up by the NL medium. Var-
ious types of scattering processes are possible, each in-
volve different types of internal excitation of the medium.
Stimulated Brillouin scattering (SBS) involves interac-
tions with sound waves in solids, liquids, or gases or ion-
acoustic waves in plasma [1–6].

SBS is known to be a valuable probe of acoustic
phonons in gases, liquids and solids. The acoustic waves
generated in solids due to SBS are amongst the most in-
tense high-frequency sound waves and this may sometimes
damage the materials [7]. SBS has recently been receiving
considerable attention owing to its numerous applications
in diverse areas ranging from optical phase conjugation
(OPC), real-time holography, pulse compression to laser
induced fusion [8–10]. For, OPC, backward SBS is pre-
ferred over other competitive techniques because it ini-
tiates at low threshold pump intensity, suffers negligible
frequency shifts and offers high conversion efficiency [8].
In laser-induced fusion experiments SBS is of great con-
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cern because it can significantly redirect the pump energy
away from the target and thus adversely affects the energy
absorption. It is therefore desirable to minimize, or by any
means control the SBS processes in these experiments.

Although SBS has been studied for more than three
decades, the theoretical predictions and experimental
measurements are far apart [9–12]. Several experiments,
with short laser pulses of low intensity, suggest that SBS
starts below the theoretically estimated threshold value,
whereas other experiments using high intensity radiation
reveal that SBS signal levels saturate at much lower val-
ues than their theoretically predicted values. Hence, more
comprehensive efforts in SBS theory are needed.

In most of the investigations of NL interactions the
nonlocal effects such as diffusion of the excitation density
that is responsible for the NL refractive index change has
normally been ignored. The diffusion of carriers is how-
ever expected to have strong influence on the nonlinear-
ity of the medium, particularly in high mobility semicon-
ductors viz., III-V compound semiconductors. Therefore,
inclusion of carrier diffusion in theoretical studies of NL
phenomenon seems to be important from both the fun-
damental and applied view points, and has thus attracted
the attention of many groups recently [13–16]. Using a hy-
drodynamic model of semiconductor plasmas we present
a study of the SBS phenomenon through the third order
optical susceptibility, originating from the finite induced
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current densities and electrostrictive (ES) polarization, in
transversely magnetized n-type semiconductors, in which
diffusion of charge carriers is a compulsory phenomena.
We have introduced the diffusion of charge carriers by con-
sidering the total current density as the sum of conduction
and diffusion current densities.

The motivation for the present study stems from the
fact that the diffusion of excess carriers can remarkably
modify the nonlinearity of the medium. In the wake of
high power lasers, such an investigation with high mobility
semiconductor plasmas becomes even more important be-
cause it may lead to a better understanding of the scatter-
ing mechanisms in plasma media and thus may prove to be
a step forward towards filling the gap between theory and
experimental observations. The semiconductor is assumed
to be immersed in a magnetic field which is expected to
lower the SBS threshold and enhance the Brillouin gain
appreciably.

2 Theoretical formulation

This section deals with the theoretical formulation of the
NL optical susceptibility, and from there the steady state
Brillouin gain for the Stokes component of the scattered
electromagnetic wave in a Brillouin active medium. Here
we consider a sample of n-type nearly centrosymmetric
semiconductors, viz., n-InSb immersed in a uniform mag-
netostatic field

−→
Bs applied along z-axis. The semiconduc-

tor is assumed to be the source of a homogeneous and
infinite plasma which is subjected to an externally driven
large amplitude spatially uniform electromagnetic wave
(pump wave), a high frequency laser or microwave propa-
gating along x-axis. The electric field of the spatially uni-
form pump wave is described by

−→
E0 = E0 exp (−iω0 t). We

have chosen a centrosymmetric crystal so that the nonlin-
earities due to piezoelectricity and electro-optical effects
can safely be ignored in comparison with those due to
electrostriction.

In the hydrodynamic regime kal �1 (ka the acoustic
wave number, and l the carrier mean free path), the basic
equations considered for the analysis are:
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Equations (1) and (2) represent the zeroth and first or-
der oscillatory fluid velocities of an electron with effective
mass ‘m’ and charge ‘e’ in which ν is the electron collision
frequency.

−−→
Eeff represents the effective electric field which

includes the Lorentz force
(−→
ϑ0 ×−→

Bs

)
in the presence of

an external magnetic field
−→
Bs. Equation (3) is the con-

tinuity equation including diffusion effects, where n0, n1

and D are the equilibrium and perturbed carrier den-
sities and diffusion coefficient respectively. Equation (4)
represents the lattice motion in the crystal where ρ is
its mass density, u the lattice displacement, γ the elec-
trostrictive coefficient, Γa the phenomenological damping
parameter of acoustic mode and c is the elastic constant.
Equation (5) reveals that the acoustic wave generated due
to electrostrictive strain modulates the dielectric constant
and gives rise to a NL induced polarization

−→
Pes. At very

high frequencies of the field, which are quite large as com-
pared to the frequencies of the motion of electrons in the
medium, the polarization is determined by neglecting the
interactions of the electrons with one another and with
nuclei of the atoms. Thus the electric displacement in the
presence of an external magnetostatic field is simply given
by

−→
D = ε

−−→
Eeff [17]. The space charge field Ex is deter-

mined by the Poisson equation (6), where ε1 is the dielec-
tric constant of the crystal. In the above equations, we
have neglected the effect due to

(−→
ϑ0 ×−→

B1

)
by assuming

that the acoustic wave is propagating along such a direc-
tion of the crystal so as to produce a longitudinal electric
field.

The interaction of the pump with the electrostric-
tively generated acoustic wave produces an electron den-
sity perturbation, which in turn drives an electron plasma
wave and induces current density in the Brillouin active
medium. In a doped semiconductor, this density pertur-
bation can be obtained by using a standard approach
adopted by Dubey and Ghosh [18]. Differentiating equa-
tion (3) and using equations (1) and (6), we obtain
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Here ωc

[
=

(
eBs

m

)]
is the cyclotron frequency and

ωp

[
=

(
n0e2

mε

)1/2
]

is the plasma frequency of carriers in

the medium. We neglect the Doppler shift under the as-
sumption that ω0 � ν � k0ϑ0.

As per the method adopted by Dubey and Ghosh [18],
the perturbed electron density (n1) produced in the
medium may be divided into two components which may
be recognized as fast and slow components. The fast com-
ponent (n1f ) corresponds to the first order Stokes compo-
nent of scattered light and varies as exp [i (k1 x − ω1 t)],
whereas the slow component (n1s) is associated with the
acoustic wave and varies as exp [i (ka x − ωa t)].
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The process of SBS may also be described as the an-
nihilation of a pump photon and simultaneous creation
of one scattered photon and one induced photon. Hence,
for these modes, the stimulated Brillouin process under
consideration should satisfy the phase-matching condi-
tions �ω0 = �ω1 + �ωa and �

−→
k0 = �

−→
k1 + �

−→
ka known as

the energy and momentum conservation relations which
determine the frequency shift and direction of propaga-
tion of the scattered light. By assuming a long interaction
path for the interacting waves we consider only the res-
onant stokes component

(
ω1 = ω0 − ωa,

−→
k1 =

−→
k0 −−→

ka

)
,

and neglect the off-resonant higher-order components [19].
Moreover, for a spatially uniform pump, we assume that−→
k1 =

−→
k0 − −→

ka ≈ −−→
ka:

−→
k0 is zero under the dipole approxi-

mation.
We obtain the following coupled equations from equa-

tion (7) under the rotating wave approximation (RWA):
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From the above equations, it may be inferred that the
generated acoustic wave and the Stokes mode couple to
each other via the pump electric field in an ES medium.
Hence, it is obvious that the presence of the pump field is
of fundamental necessity for SBS to occur.

The slow component n1s may be obtained from equa-
tions (4) and (8) as
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It is evident from the above expression that n1s

strongly depends upon the magnitude of the pump inten-
sity. The density perturbation thus produced affects the
propagation characteristics of the generated waves.

The Stokes component
(
ω1,

−→
k1

)
of the induced current

density may be obtained from the standard relation
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The first term of the above expression represents the lin-
ear component of the induced current density. The second
term represents the NL coupling amongst the three inter-
acting waves via the total NL current density including
the diffusion current.

The induced polarization may be expressed as the time
integral of the induced current density. The polarization
Pcd(ω1) may therefore be obtained from equation (11) as
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ω3
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The origin of the SBS process lies in that component of
Pcd(ω1) which depends on |E0|2 E1.

Hence, the threshold pump amplitude for the onset of
SBS may be obtained by setting Pcd(ω1) = 0 in equa-
tion (12) as
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Therefore, the interaction between the pump and the cen-
trosymmetric crystal will be dominated by the SBS phe-
nomena at a pump power level well above the threshold
field E0th.

Using the standard relation between induced polariza-
tion Pcd(ω1) at frequency ω1 and Brillouin susceptibility
(χB)cd, one may obtain

(χB)cd =
ω3

0 k1 ka ω2
p γ2

2 ω1 ρ (ω2
0 − ω2

c )2 (δ2
a − 2iωaΓa)

[A]−1. (14)

From equation (14) it can be inferred that the Brillouin
susceptibility depends upon material parameters such as
equilibrium carrier density, diffusion coefficient etc. It is
also found that (χB)cd depends on the magnitude of ex-
ternally applied magnetic field

−→
Bs through the cyclotron

frequency ωc.
Besides this Brillouin susceptibility, the system should

also possess an ES polarization, which arises due to the
interaction of the pump with the acoustic wave generated
in the medium. The scattering of the pump wave from the
acoustic phonons affords a convenient means of controlling
the frequency, intensity and direction of a scattered beam.
This type of control makes a large number of applications
possible involving the transmission, display and process-
ing of informations. The ES polarization is obtained from
equation (5) as

−→
Pes =

k1 ka γ2 ω4
0 |E0|2 −→E1

2 ρ (δ2
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Using equation (15) one may obtain the Brillouin suscep-
tibility due to ES polarization as
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From equations (14) and (16) we obtain the effective
Brillouin susceptibility using the relation

(χB)eff = (χB)cd + (χB)es (17)

as
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Rationalization of equation (18) yields the imaginary part
of Brillouin susceptibility as
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In order to investigate the effective Brillouin gain con-
stant, we use the following relation given in reference [20]:

[
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Substituting the imaginary part of effective Brillouin sus-
ceptibility from equation (19) in equation (20) we obtain
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Equation (21) can be used to compute the growth of
Brillouin scattered mode in centrosymmetric diffusive
crystals.

If the sample length is 10 to 102 orders greater than
the pump wavelength, following Simoda [21] one can eas-
ily use the expression for effective induced polarization
(Pnl)eff [= Pcd + Pes] deduced for an infinite medium, to
express the transmitted electric field amplitude ET in a
crystal of cell length L,

ET = − i k1 L

ε

∣∣∣ (Pnl)eff (ω1)
∣∣∣ , (22)

which can be further written as
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The above equation can be employed to determine the
transmitted intensity (IT ) as

IT =
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where R =
(
δ2
a − 2 i ωa Γa

)
and C is the velocity of light.

3 Results and discussion

By analyzing equation (13), it can be realized that the
external magnetic field and wave number have strong in-
fluence on the threshold field E0th required for the on-
set of useful Brillouin scattering in the crystal. E0th de-
creases with increasing ωc and k1. This trend has also been
observed experimentally by Muravjov and Shastin [22]
in the investigation of stimulated FIR emission un-
der a crossed field configuration. Considering the factor

δ1

(
=

√(
ω2

p − ω2
1 − k2νD

))
, it may be concluded that

the threshold field for the stimulated process increases
with increasing carrier number density and decreasing dif-
fusion coefficient.

A close look at equation (18) reveals that the effec-
tive Brillouin susceptibility is a sensitive function of car-
rier concentration via plasma frequency ωp, magnetic field
through cyclotron frequency ωc and diffusion coefficient
through the factor A. The cubic Brillouin susceptibility
with carrier density 1024 m−3 purely due to diffusion cur-
rent is found to be ≈8.5 × 10−19 esu. At lower concen-
tration this magnitude of (χB)eff decreases by about five
orders of magnitude and becomes potentially non-usable
for the fabrication of cubic NL devices. The magnitude of
the third-order susceptibility due to total current density
(conduction as well as diffusion) agrees reasonably with
the experimentally observed [22] and theoretically quoted
values [23] using conduction current only.

A detailed numerical analysis of Brillouin gain and
transmitted intensity is also made in an electrostrictive
doped III-V semiconductor crystal at 77 K. The crystal is
assumed to be subjected to a 10.6 µm nano second CO2

laser. The material constants are taken as: m = 0.015m0

(m0 being the free electron mass), ρ = 5.8 × 103 kg m−3,
ν = 3 × 1011 s−1, ω0 = 1.78 × 1014 s−1, ωa = 1012 s−1,
Γa = 2 × 1010 s−1, η = 3.9 and ϑa = 4.8 × 103 m s−1.

We now focus our attention on the physical param-
eters that affect the Brillouin gain. It is found that the
Brillouin gain increases with the input pump amplitude
(Fig. 1). It is clear that higher pump intensity will cause
greater gain. Figure 2 shows the variation of the gain con-
stant as a function of the magnetic field (in terms of ωc

ω0
).

It is a unique feature displayed in this figure that finite
gain is obtained only when ωc is close to ω0. This be-
haviour may be utilized for the construction of magnetic
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Fig. 1. Variation of gain with pump electric field.

Fig. 2. Variation of gain with (ωc/ω0).

switches. One can infer from this figure that the gain in-
creases with the magnetic field up to ωc � ω0 and reaches
its maximum value around ωc ≈ ω0. The gain starts de-
creasing sharply in the region when ωc � ω0. This be-
haviour may be attributed to the fact that the gain coeffi-
cient is proportional to

(
ω2

0 − ω2
c

)−2 (Eq. (21)), and when
ωc > ω0 magnetic absorption becomes vital which reduces
the magnitude of the gain coefficient. The dependence of
Brillouin gain on carrier number density (ne) via plasma
frequency ωp is shown in Figure 3. It is clear from the fig-
ure that, as the carrier density increases, the gain increases
rapidly. Figures 4–6 display the variation of transmitted
intensity of the Brillouin scattered mode (IT ) with differ-
ent input parameters when the cell length is taken as a
hundred times larger than the input pump wave length.
Figure 4 shows the nature of variation of transmitted in-
tensity (IT ) with the input pump intensity. It is found that
IT increases rapidly with increasing pump intensity (Iin).
Hence, in order to achieve maximum transmitted intensity

Fig. 3. Variation of gain with ωp/ω0.

Fig. 4. Variation of transmitted intensity with input intensity.

of the Brilluoin mode, it is always better to use a high in-
tensity pump keeping damage threshold of the crystal in
mind. The dependence of transmitted intensity on mag-
netic field (in terms of the ratio of cyclotron frequency
with pump frequency) as shown in Figure 5 duplicates
the dependency of Brillouin gain on ωc

ω0
as shown in Fig-

ure 2. Figure 6 shows that the transmitted intensity first
increases with increasing doping level and then achieves
a maximum value at about ωp ≈ 0.7ω0. A little variation
of doping level on the upper side (ωp � 0.7ω0) causes a
drastic reduction in the magnitude of Brillouin gain until
ωp ≈ 1.5ω0 and then the gain marginally increases. This
behaviour may be attributed to the factor within square
brackets in equation (21). Hence, by adjusting the doping
level one may maximize the Brillouin gain in the magne-
tized diffusive semiconductor very easily. This maximum
gain is possible in moderately doped samples and hence
carrier diffusion and magnetic field are favorable for the
study of Brillouin gain in the crystal.
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Fig. 5. Variation of transmitted intensity with ωc/ω0.

Fig. 6. Variation of transmitted intensity with ωp/ω0.

The large discrepancies between experimental
and theoretical studies in solids may be attributed
to the finite size of semiconductor plasmas as well
as the finite values of drift velocities attainable in
semiconductors, and the strong attenuating effects of
scattering and Landau damping. The application of a
magnetic field across the wave propagation direction
tends to decrease the Landau damping effects. The
above discussion reveals that large Brillouin gain and
transmitted intensity can be easily achieved in moder-
ately doped magnetized semiconductor plasmas. The
present study thereby provides a model most appropriate

for finite laboratory semiconductor plasmas, and an ex-
perimental study based on this work may provide new
means for developing potentially useful Brillouin cells and
for characterization and diagnosis of ES diffusive semicon-
ductors.
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